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A gauge theory with the gauge group U(1) x U(1) x SU(2) x SU(3) x SU(4) is 
shown to fit well into the generalized Kaluza scheme with eleven-dimensional 
space-time and its compact subspace S 2 x S 5. A unified theory is obtained which 
exhibits some broken super-symmetric features (N = 8). Our approach is dictated 
by phenomenological requirements. The appearance of three generations of 
leptons and six flavors of colored quarks follows naturally. Within our Lagrangian 
there appear several free parameters (coupling constants), but some relations 
between them may follow from the requirement of cancellation of divergencies. 

1. T W O  D I F F E R E N T  S T R A T E G I E S  

In the last  few years  it became  fa sh ionab le  to combine  the genera l ized  
mu l t i d imens iona l  K a l u z a - K l e i n  (Kaluza ,  1921; Klein ,  1926) theory  with 
supersymmet r ies .  The reason  is that  if  the space  is compac t i f i ed  and  reinter-  
p re ted  f rom the v i ewpo in t  of  an observer  l iving in the M i n k o w s k i a n  subspace  
o f  the m u l t i d i m e n s i o n a l  space ,  even the s imples t  supermul t ip le t  (N~d)= 1) 
involving one t ensor  and  one sp in -3 /2  field in d d imens ions  represents  a 
r icher  set o f  fields inc lud ing  also lower  spin  values.  The n u m b e r  o f  
d imens ions  11 seems pa r t i cu la r ly  in teres t ing and  p romis ing  for  several  
reasons.  However ,  using the formulas  

n(2)  : l ( d  - 1)(d - 2 )  - 1 and  n (3 /2 )  =12E(d/2)(d --3) (1) 

for the numbers  o f  field componen t s  in the  case o f  massless  fields with 
spins 2 and  3 /2  in d = 11 d imens ions  (whereby  the n u m b e r  n (3 /2 )  appl ies  
to Weyl ' s  sp inors  whereas  in the case o f  M a j o r a n a  sp inors  it shou ld  be  
doub led ) ,  it is seen tha t  a doub le t  {2, 3/2} does  not  involve the same n u m b e r  
o f  boson ic  and  fe rmionic  field componen t s  (44 c ompone n t s  o f  spin  2 and  
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128 of spin 3/2) so that 84 bosonic field components are missing. A necessary, 
though not sufficient, condition for the set of fields to form a supermultiplet 
is to supplement it by auxiliary bosonic fields whose number of components 
would be just 84. It has been noticed that 84 is the number of components 
of a completely antisymmetric tensor A ~  in 11 dimensions, and been 
concluded that the set N(1 ~ = 1 has to be supplemented by such an auxiliary 
field (Cremer and Julia, 1979; Binan et al., 1982; Duff, 1983). 

It cannot be denied that this approach is satisfactory from a point of 
view of both superalgebra and differential geometry (the introduction of 
an antisymmetric tensor being connected with the concept of geometrical 
forms) but it has not much to do with physical reality, i.e., with symmetries 
believed to play a role in physics. The experience of the last few years 
contribute to the opinion that frontal attacks on the problem of unification 
based upon local supersymmetries are not very promising. Therefore we 
should rather look for some new, roundabout approaches, not so ambitious 
but methodologically safer. 

One more argument against the above-mentioned strategy of  starting 
with a supermultiplet in an open multidimensional space, introducing 
supersymmetric interactions and later, after compactification, trying to 
reinterpret the results from a four-dimensional viewpoint, is offered by a 
discussion of the case d = 5. It follows from (1) that the number of metric 
tensor components in five dimensions is five, whereas that of spinor field 
components is only four. Thus, it cannot help to introduce auxiliary bosonic 
fields (as was the case in 11 dimensions) on the contrary, one would need 
one more spinor field component,  but this does not make sense. A remedy 
could be to go over to the case of extended supermultiplet N(5) = 2 involving 
besides the metric field (five components) two spin-3/2 fields (eight com- 
ponents) and one five-vector field (three components). If reinterpreted from 
a four-dimensional viewpoint this set is seen to be reducible 

{2 ,3 /2 ,3 /2 ,  1}(5)~{2, 3/2, 3/2, 1}(4)+{1, 1/2, 1/2, O, 0}(4) (2) 

An alternative but simpler possibility is to assume, together with Kaluza, 
that the metric field component gss is not a field quantity but may be put 
equal to unity. As was shown by Einstein et al. (Bergmann, 1947) the 
condition g55 = 1 may be secured by introducing a requirement that the 
world is dosed  in the fifth dimension and that every geodesic line closed 
in the fifth dimension closes without discontinuity of direction (in this case 
it may be called a closed fiber). Under this assumption the compactified 
five-dimensional space-time involves only four, not five, independent metric 
field components, reinterpretable from a four-dimensional viewpoint as a 
combination of  the ordinary metric field g~,~ (two components) with a vector 
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field A~ (also two components) according to the following: 

(g~+ e212A~sg~, el~l,~ ) 
(Y:~x) = \ elsg~ (3) 

for At, N = 0, 1 . . . .  ,4  and /z, v = 0 , . . . ,  3. This assumption, equating the 
number of bosonic and fermionic field components, enables one to regard 
them as forming a supermultiplet N(5)= 1, viz., 

{2, 3/2}(5) --> {2, 3/2}(4)+ { 1, 1/2}(4) (4) 

which is also reducible, but simpler than (2). 
The above considerations may be extended to the case of more than 

five dimensions (with d - 4  compact dimensions) whereby the metric tensor 
splits according to 

{ g~ + g 212 E A~A~ 
a 

(Y~t~:) = gl E K ~ A 
a 

gl~ K~A:!  

g"" J 
(5) 

with m, n = 4 , . . , ,  d - 1 and K~  denoting the Killing vectors of  the compact 
subspace. 

In close analogy to the five-dimensional case, we may disregard the 
formula (1), but instead assume that the sector gr,, is independent of the 
Minkowskian coordinates x"  and consequently does not involve any scalar 
fields. This assumption is natural from the point of view of the fiber bundle 
technique. Thus, the number of independent field components appearing 
in equation (5) is equal to the number of vector fields plus two components 
of the Minkowskian g,~. Consequently, the type and number of bosonic 
and fermionic field components in d dimensions will be different from that 
assumed usually. 

2. A GAUGE THEORY 

After the above preliminaries let us go over to a construction of a 
specific formalism. Instead of a frontal attack we shall use a step-by-step 
approach starting with a pure gauge theory, then generalize it in the sense 
of Kaluza, and, finally, look for possible connections with the idea of 
supersymmetries. 

Admitting that guage interactions are the most common and the most 
important ones, we have to choose, above all, a suitable gauge group G. 
Obviously this group should contain the standard group G =  
U(1) x SU(2) x SU(3) as its subgroup. The usual requirement that it should 
be a semisimple group may be regarded as too restrictive. Our choise is a 
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28-parameter group 

G =  U(1) x SU(2) x U(3) x SU(4) (6) 

constituting a natural extension of the standard group and being a maximal 
subgroup of  SU(5) x SU(5) which, in turn, is a maximal subgroup of the 
exceptional group E8. 

The vector representation of this group involves 28 vector fields to be 
denoted as follows: a singlet V, related with U(1), a triplet A~ related with 

a a 
SU(2),  a nonet Vr connected with U(3), and a 15-plet By related with 
SU(4). Obviously, the singlet and the triplet are to be identified with the 
Yang-Mills fields transmitting the electro-weak interactions, the nonet 
(reducible to an octet and a singlet) have to be responsible for the strong 
interactions and the 1 5-plet represents a new type of  interaction constituting 
a generalization of the set of  vector fields X ,  and Yu known from the G U T  
based on the group SU(5).  

The spinor fields constituting sources of all those vector fields may be 
assumed in the form of Majorana fields endowed with the usual spinor 
index a = 1 , . . . ,  4 connected with the Minkowski space M 4, and also with 
further indices connected with the representations of  the subgroups of G. 
At first sight it seems that three such indices are needed, p, to, and ~: for 
the groups SU(2),  SU(3),  and SU(4),  respectively, but in view of the fact 
that U(3) is a subgroup of SU(4) it is possible to assume a more economical 
scheme involving only two indices p = 1, 2 and ( =  1 , . . . ,  4. Thus, let us 
consider a set of  fields, to be denoted as ~O,p~, and assume a Lagrangian 

3 7  = 3 7 ( 0 )  _~_ 37~el  . . . .  k) "~ 3 7 ~ s t r o n g )  -]- ~ ' ~ n e w )  (7) 

where where 37 (0) is a sum of Lagrangians for all free fields. The remaining 
terms denote interaction Lagrangians coupling with the field O with the 
gauge fields (and Higgs fields). In particular 37~el . . . .  k) is a sum of 
Lagrangians describing the electro-weak interactions whereby summation 
is extended over the index ~: = 1 , . . . ,  4. They involve the four-vector fields 
V~, and A~ (a = 1, 2, 3). Similarly 37~,ew) denotes an SU(4)-symmetric  gauge 
interaction involving the index ~ and the set of 15 vector fields By and a 
summation over the index p. It is seen that all spinor field components are 
engaged into these interactions so that they may be regarded as universal. 
On the other hand~ the strong interactions are not universal and assume 
the form 

9 2 3 
t __ a a 37(strong)-- E E E ~pcTr tpp. (8) 

a = l  p = l  ~r 

where summation over the indices ~:, ,7 is extended only over the set of three 
values ~:, r /=  1, 2, 3 and T~, are 3 x3 matrices of  the group U(3). It means 
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that the numerals ~: = 1,2, 3 denote three colors of quarks while ~: = 4 denotes 
leptons. In other words, the leptonic number is a fourth color although the 
generalized color symmetry is strongly broken by the interaction (8) involv- 
ing the gluons V~. The bispinor ~pr is interpretable as representing a 
doublet of  quarks (e.g., the u and d quarks endowed with color) together 
with a doublet ofleptons (e.g., e and re). 3 The SU(4)-symmetric interactions 

a involving the fields B~ allow for a transformation of nucleons into leptons. 
It may be concluded that a gauge theory based upon the gauge group 

(6) is a promising framework for a correct description of the fundamental 
physical objects and their dynamics, the more so that nothing prevents us 
from introducing further generations of quarks and leptons into the scheme 
and adjusting suitably the coupling constants of weak, strong, and the 
remaining SU(4)-symmetric interactions so as to achieve agreement with 
experimental evidence. On the other hand, this gauge theory has also some 
drawbacks, viz., it cannot predict the number of generations of leptons and 
flavors of quarks. The gauge group being not semisimple, no relations among 
the coupling constants are known. Moreover, the Higgs fields must be 
introduced "by hand." Last but not least, it does not necessitate the appear- 
ance of gravitation. Such drawbacks may be remedied, at least partly, by 
taking into account the idea o f  a multidimensional space-time, and later 
on of possible supersymmetries. 

3. A MULTIDIMENSIONAL SPACE-TIME 

An intimate connection between the gravitational field and the gauge 
fields is offered by the generalized Kaluza-Klein theory with the metric 
described in equation (5), the dimensionality and the symmetry of the 
compact subspace being dictated by the gauge group (6) (Rayski and Rayski, 
1983). 

Consider an 11-dimensional space-time with seven closed dimensions 
and with the topology of the following direct product of spaces: M 4 • S 2 x 
S s, where M 4 means a four-dimensional Minkowski space and S" is an 
n-dimensional surface of a sphere or hypersphere. The mixed tensor com- 
ponents 7~n with ~, = 0 , . . . ,  3 and n = 4 , . . . ,  l0 are of the form 

3 

y~.,, = ~ A~K'~ for n = 4, 5 
a = l  

and (9) 

15 

y~, = ~ B~K~ f o r n = 6 , . . . , 1 0  
a = l  

3 R i g h t - h a n d e d  n e u t r i n o s  still w a i t i n g  to be  d i scove red .  
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with the Killing vectors representing the symmetries of S 2 and S 5, respec- 
tively. 

As is well known, the Lagrangian R(1~) splits into the usual scalar 
curvature of the four-dimensional space-time R(4) and the Lagrangians for 
the fields A~ and By in the curved four-dimensional space-time with the 
metric g,~ but otherwise free, i.e., belonging to ~(o) in (5). Obviously the 
Lagrangians for the free Majorana field and the interaction Lagrangians 
appearing in (5) have to be rewritten in a generally covariant way in terms 
of the metric g,~. According to the formula for the number of components 
of a Majorana field in d dimensions 

n(�89 =2  E(d/2~ (10) 

it possesses 32 components, which is exactly equal to the number of 
components of the formerly introduced field ~0~oe. Thus the index ~ together 
with the suffices p = l, 2 and ~ = 1 , . . . ,  4 may be rearranged into a single 
index a = 1 , . . . ,  32 of a generalized spinor 0 ,  in 11 dimensions. 

In an 11-dimensional space (or direct product of spaces) there exist 
eleven 32 • Dirac matrices F,~ (a,/3 = 1 , . . . ,  32) which may be also 
written in the form of direct products of two sets of usual 4 •  Dirac 
matricesy~and/3~n(k = 1 , . . . , 4 )  a n d a s e t o f 2  x2matrice~ %~k ( k =  1,2,3) 

F k = T k X~ X~ for k = 1, 2, 3 

F k + 3  = ~/4 X 'rk • for k =  1,2 
(11) 

Fk+5='y5•215 k for k =  1 , . . . , 5  

F ll = 7 4  • ,/-3 • 11 

satisfying the usual anticommutation relations 

{r~, r~:} = 26 ~N for ~ ,  N =  1 , . . . ,  11 (12) 

The matrix F 11 may be assumed to be diagonal and related either to the 
timelike dimension and play the role of F ~ or, if F ~ is assumed to be a unit 
matrix, then F ~1 will play the same role as 3, 5 does in Majorana theory. The 
matrices r 1 and ~.2 are directly connected to S 2 and/3 ~, . . . , / 3  5 to S 5. It is 
seen that weak interactions are related to S 2 whereby U(1) is a maximal 
subgroup of  SU(2), whereas strong interactions are related to S 5 whereby 
U(1) •  is a maximal subgroup of SU(4) [isomorphic with SO(6), 
being a symmetry of $5]. 

Coming back to the discussion of the Yang-Mills fields it is to be 
noticed that they are of two quite different provenances: the fields Ay and 
By are of metrical origin, i.e., are involved into the metric tensor components 
y ~  as well as into the mixed components 3'~m (but not into y,,~), whereas 
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the singlet V~ and the nonet V~ are genuine vector components.  But, being 
genuine vectors, they should not be four-vectors but 11-vectors V~, i.e., in 
the massless case they should possess nine independent components,  two 
components  in the subspace M 4 and seven more in the compact  subspace 
S 2 x  S s. Since the total number  of such l l -vectors is ten, the number  of  
their extra components  V~ and V~ beyond the Minkowski space is 70. To 
the observer from the Minkowskian world these last appear  as scalars, 
whence one should expect (besides the usual metric field g ~ )  3 + 15 + 1 + 9 = 
28 four-vector fields and 70 scalar fields. These scalars have not been 
introduced "by  hand,"  but appear  naturally, even compulsorily, within the 
11-dimensional formalism. 

In the usual gauge theories scalars are not gauge fields and it is not at 
all clear what type of interactions they should be submitted to. Now, 
inasmuch as, in fact, they appear  not to be genuine scalars, but further 
components  of  multivectors, their interactions are nothing but gauge interac- 
tions in an l l -dimensional  manifold. In particular, the strong interaction 
term (8) should be rewritten and completed as follows: 

g 2 3 

=~(strong)- E Z 2 a a ' - ~ o ~ T ~  V~F~,w~O~ n (8') 
a=l  p,o-~t ~r 

where the usual spinor indices a,/3 have been omitted and the usual 
gravitation (in the sector ~ ,  N =  0 , . . . ,  3) has been neglected. A similar 
generalization applies to the singlet V~ involved in the weak interactions. 

4. POSSIBLE RELATIONS TO SUPERSYMMETRIES 

A remarkable result of  the above considerations is that the set of  gauge 
fields involved into g ~ ,  together with the nonet V~ and singlet V~, 
compatible with the world structure M 4 • S 2 X S 5 and with the gauge sym- 
metry (4), is equivalent to a set of  one tensor field and 28 vector fields 
together with 70 scalar fields if reinterpreted from the Minkowskian space- 
time. These numbers are exactly equal to those appearing in the well-known 
supermultiplet being the highest possible extension N =  8, viz., Table I. 
This is a remarkable fact showing that our version of generalized Kaluza 
theory has something to do with supersymmetries. I f  this coincidence is not 
fallacious, it is not purely accidental--which is hard to bel ieve--we should 

Table I 

Spin 2 3/2 1 1/2 0 
Number of fields 1 8 28 56 70 
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expect that the (two-component complex or four-component real) fields 
describing massless particles with spins 3/2 and 1/2 whose numbers are 8 
and 56, respectively, constitute the sources of our gauge fields and denote 
the fundamental building blocks of the unified theory. 

To stress it once again: the 11-vectors (whose number is altogether ten, 
i.e., one plus one plus eight) are not introduced by hand. Their introduction 
has been dictated by the necessity of reconciliation of  the topology and 
symmetry S 2 x S  5 of the compact subspace of Kaluza's l 1-dimensional 
theory with the requirements of global extended N = 8 supersymmetry. 

According to (1) the number of components of Majorana field in 11 
dimensions is 32. Nothing, however, forbids us from fusing some pairs of 
them into Dirac spinors in the ordinary space-time, though endowed with 
some additional indices (gauge group indices). Splitting the set of 56 
spin- l /2  fields into 48+8  the former may be reinterpreted as describing 
three generations of leptons, together with three generations (six flavors) 
of quarks (48 x 4 =  (3+ 1) x 4 x 3  x4). The remaining 32 spin-l /2 com- 
ponents may be amalgamated with 32 spin-3/2 components to form vector- 
spinor fields, each of them describing particle and antiparticle states with 
four spin orientations (3/2, 1 / 2 , - 1 / 2 , - 3 / 2 ) .  The effect of "swallowing" 
some spin- l /2  fields by spin-3/2 fields would be analogous to Higgs mechan- 
ism endowing the spin-3/2 fields with masses. 

It should be also noticed that the total number of  components of  all 
spinor fields in Table I is equal to the number of components of massless 
spin-3/2 field in 11 dimensions. This cannot be a pure coincidence. Hence, 
it may be said that our set of fields consists of only one field of spin-2 and 
one field of spin-3/2 in 11 dimensions, supplemented by some auxiliary 
11-vector fields (two singlets and one octet). The 11-vectors are indispensable 
to complete the N = 8 supermultiplet. 

At this stage the formalism is locally gauge invariant but probably not 
supersymmetric as regards interactions between the members of the super- 
multiplet. Yet supersymmetry may well be realizable in Nature only partly, 
as strongly broken s u - s y ,  with all interactions in the real world being only 
gauge interactions with coupling constants adjusted so as to maximally 
reduce divergencies. 
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